Developmental roles of heparan sulfate proteoglycans: a comparative review in Drosophila, mouse and human.

نویسندگان

  • Marc Princivalle
  • Ariane de Agostini
چکیده

In recent years, progress in the fields of development and proteoglycan biology have produced converging evidence of the role of proteoglycans in morphogenesis. Numerous studies have demonstrated that proteoglycans are involved in several distinct morphogenetic pathways upon which they act at different levels. In particular, proteoglycans can determine the generation of morphogen gradients and be required for their signal transduction. The surface of most cells and the extracellular matrix are decorated by heparan sulfates which are the most common glycosaminoglycans, normally present as heparan sulfate proteoglycans. Considerable structural heterogeneity is generated in proteoglycans by the biosynthetic modification of their heparan sulfate chains as well as by the diverse nature of their different core proteins. This heterogeneity provides an impressive potential for protein-protein and protein-carbohydrate interactions, and can partly explain the diversity of proteoglycan involvement in different morphogenetic pathways. In this review, we summarize the current knowledge about mutations affecting heparan sulfate proteoglycans that influence the function of growth factor pathways essential for tissue assembly, differentiation and development. The comparison of data obtained in Drosophila, rodents and humans reveals that mutations affecting the proteoglycan core proteins or one of the biosynthetic enzymes of their heparan sulfate chains have profound effects on growth and morphogenesis. Further research will complete the picture, but current evidence shows that at the very least, heparan sulfate proteoglycans need to be counted as legitimate elements of morphogenetic pathways that have been maintained throughout evolution as determinant mechanisms of pattern formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Impact of SULF1 Gene on Angiogenesis

Single-gene disorders occur when mutation in a gene causing alteration of gene function while in multifactorial disorders, mutations occur in multiple genes, and these are usually coupled with environmental causes. In addition, in a multifactorial disorder such as diabetes, the complication is under the influence of different genes. For example, in diabetic retinopathy many genes are involved i...

متن کامل

Functions of heparan sulfate proteoglycans in cell signaling during development.

Heparan sulfate proteoglycans (HSPGs) are cell-surface and extracellular matrix macromolecules that are composed of a core protein decorated with covalently linked glycosaminoglycan (GAG) chains. In vitro studies have demonstrated the roles of these molecules in many cellular functions, and recent in vivo studies have begun to clarify their essential functions in development. In particular, HSP...

متن کامل

Differential expression of syndecan isoforms during mouse incisor amelogenesis.

Syndecans are transmembranous heparan sulfate proteoglycans (HSPGs) with covalently attached glycosaminoglycan side-chains located on the cell surface. The mammalian syndecan family is composed of four types of syndecans (syndecan-1 to -4). Syndecans interact with the intracellular cytoskeleton through the cytoplasmic domains of their core proteins and membrane proteins, extracellular enzymes, ...

متن کامل

Host glycosaminoglycan confers susceptibility to bacterial infection in Drosophila melanogaster.

Many pathogens engage host cell surface glycosaminoglycans, but redundancy in pathogen adhesins and host glycosaminoglycan-anchoring proteins (heparan sulfate proteoglycans) has limited the understanding of the importance of glycosaminoglycan binding during infection. The alpha C protein of group B streptococcus, a virulence determinant for this neonatal human pathogen, binds to host glycosamin...

متن کامل

FGFs, heparan sulfate and FGFRs: complex interactions essential for development.

Fibroblast growth factors (FGFs) comprise a large family of developmental and physiological signaling molecules. All FGFs have a high affinity for the glycosaminoglycan heparin and for cell surface heparan sulfate proteoglycans. A large body of biochemical and cellular evidence points to a direct role for heparin/heparan sulfate in the formation of an active FGF/FGF receptor signaling complex. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The International journal of developmental biology

دوره 46 3  شماره 

صفحات  -

تاریخ انتشار 2002